

J-Band® & Sustainability

2022

Making a difference today for a better world tomorrow.

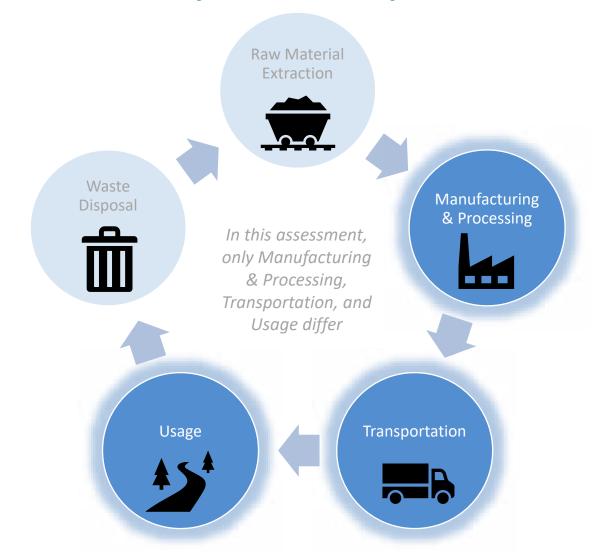
Table of Contents

Situation

- J-Band® is growing
 - More agencies using on more roadways
 - Project number doubled in 2020
- Financial story is compelling and communicated well
 - Benefit: 3-5x the cost of the material, per IDOT
- Sustainability story can be added
 - Stakeholders are hungry for impact and collaboration

	Stakeholder	Sustainability Goals
3AL	D@T SUSTAINS	 Decrease emissions of greenhouse gases (GHGs) and other pollutants Ensure transportation infrastructure resiliency
FEDERAL	U.S. Department of Transportation Federal Highway Administration SUSTAINABLE HIGHWAYS INITIATIVE	For the Federal Highway Administration (FHWA), sustainability encapsulates a diversity of concepts, including efficient use of funding, incentives for construction quality, regional air quality, resilience considerations
STATE	Oregon Department of Transportation	 ODOT is the first transportation agency to have a comprehensive Sustainability Plan Careful material selection and managementand lowering demand for new productscan also reduce operating costs while increasing environmental benefits.
CITY	C40 CITIES	 Hundreds of members have signed the Climate Mayors letters committing to the Paris Agreement C40 is a network of the world's megacities committed to addressing climate change.
OTHER	Sustainable Airport Development Obsublish Obsublish	Over 40 North American airports have received funding from FAA to create sustainability plans, including baseline GHG inventory, reduction targets

Key Questions


- → How does J-Band® compare to alternative joint solutions in the categories of air quality, greenhouse gas emissions, and safety?
- → How will J-Band's sustainability **benefits shift in the future**, due to climate factors, distracted driving, and possible policy developments?
- → Which agencies and organizations that have **control over the adoption** and expansion of J-Band, also have **interests in sustainability?**
- → How can J-Band **communicate** its sustainability benefits to those parties?

Comparative Life Cycle Analysis

A Life Cycle Analysis (LCA) is the compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its five

life cycle stages.

When only **certain** stages of the LCA differ between selected alternative scenarios, a comparative LCA is used to assess only the differing stages, without performing a full LCA

Selected Audience

- → Which customers want to hear about sustainability?
- → What topics are they most interested in?
- → How can J-Band help them meet their goals?

State or municipal	Minnesota	Illinois	New York	Delaware	Pennsylvania
transportation agencies	Michigan	Texas	California	Washington	NJ/NY Port Authority
Contractors	Tri-State Asphalt	Milestone	Granite Construction	ColasUSA	CRH
Regional or Federal entities	DOT Sustains	Sustainable Highways Initiative (FHWA)	Transportation and Climate Initiative (TCI)	National Asphalt Pavement Association (NAPA)	

A comprehensive table summarizing the audience assessment findings was shared with AMI. Key takeaways are summarized on the following slides.

State or Municipal Agencies

- DOTs have a role to play in helping states achieve state-wide emission reduction targets.
- Energy and GHG emission goals focus on facility usage and electrification of transportation sector.
- Rise in programs aimed at increasing the use of 'green' products, sustainable practices, and innovative new techniques and materials. Life Cycle Analyses (LCA) and Environmental Product Declarations (EPDs) are increasingly common.
- Many agencies have goals to achieve zero work-zone fatalities.

Contractors

- As a group, contractors are beginning to develop sustainability programs.
 Many contractors made mention of sustainability, while Granite Construction and CRH appear to be further along the developmental curve.
- There is a focus on optimizing efficiency and transitioning to low-carbon technologies in order to meet GHG reduction targets.
- Meeting all air emission limits is a priority.
- Companies are looking to use new technologies and materials with improved sustainability attributes.
- Safety is a core goal or company value for most contractors.

Regional or Federal Entities

- These groups appear to be more focused on the big picture of sustainability, raising awareness and offering support, versus dealing with in-depth details and target setting.
- They are looking to advance energy efficiency and reducing GHG emissions throughout the industry, through collaboration, technical assistance, and support.
- There is a focus on improving **community health** and **quality of life** through a reduction in air pollutants.
- Parties are dually focused on sustainable innovation and climate resiliency.

Interview Insights

- Local DOTs, regional transportation districts, and "super-regionals" (ex. Chicago tollway, Florida tollway, NJ Turnpike, etc.) have the autonomy and dexterity to be early adopters of new technologies.
- While not yet widespread, Environmental Product Declarations (EPDs) are growing in use and commonality, with several states now requiring them.
- LCAs or EPDs are beginning to be gateways to bidding (i.e. a box to be checked) and will likely evolve to become determinants in bid selection (i.e. your performance demonstrated on the LCA/EPD will factor into bid decisions, similar to cost). The movement on this topic in 2021 was reported to be greater than movement over the past five years combined.
- There has been movement towards developing a framework for a LEED-type system for infrastructure. Greenroads and ENVISION were mentioned as ones to watch.
- The **Federal Aviation Administration** is working with the asphalt industry to accelerate longitudinal joint solutions.

Audience Leaders

- State leaders include WA, CA, NY/NJ PA, MN
 - Other states not included in the analysis but referenced as leaders during industry interviews: OR, CO, AZ
- Leading contractors include Granite and CRH

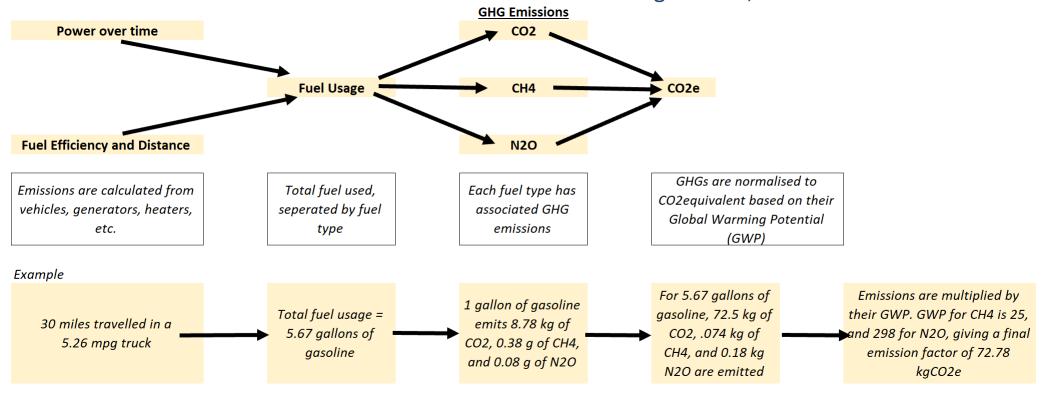
QUANTIFYING THE COMPARATIVE **EFFECTIVENESS OF J-BAND TO MAINTAIN** THE LONGITUDINAL JOINT

Alternative Scenarios Analyzed

Lifecycle Stage		J-Band	Joint Adhesive + Sealant	Infrared Joint Heaters	Pave Wide and Trim Back Alternative
	Upstream	Traditional HMA + Material inputs	Traditional HMA + Material inputs	Traditional HMA	Traditional HMA + Additional 6" of HMA
Creation of Product(s)	Manufacturing	Electricity consumption, heat	Electricity consumption, heat	-	Additional electricity consumption, heat
	Transportation of Product	Heated trucks, pick-up	Pick-up pulling heated kettle, asphalt emulsion distributor	Transported with paver	Additional dump trucks for excess waste
	Product End of Life	Traditional HMA/RAP	Traditional HMA/RAP	Traditional HMA/RAP	Traditional HMA/RAP
	Road Construction	Traditional HMA + J-Band Application	Traditional HMA + Application of Adhesive, Sealant	Traditional HMA (Smaller volume) with pass of heater	Traditional HMA + Mill off additional 6"
Road Lifetime	Road Maintenance	Minor crack sealing 3 years	Crack sealing/filling every 3 years May use routers	Crack sealing/filling every 3 years	Crack sealing/filling every 3 years
	Road End of Life	Year 18 (conservative)	Year 15	Year 16	Year 15

Alternative Scenarios - Impacts Quantified

In this **comparative LCA**, impacts are only quantified for lifecycle stages **where the alternatives differ**. The elements excluded from the quantitative analysis are crossed out in the table below.


Lifecycle Stage		J-Band	Joint Adhesive + Sealant	Infrared Joint Heaters	Pave Wide and TRIM Back Alternative
	Upstream	Traditional HMA+ Material inputs	Traditional HMA+ Material inputs	Traditional HMA	Traditional HMA ± Additional 6" of HMA
Creation of Product(s)	Manufacturing	Electricity consumption, heat	Electricity consumption, heat	-	Additional electricity consumption, heat
	Transportation of Product	Heated trucks, pick-up	Pick-up pulling heated kettle, asphalt emulsion distributor	Transported with paver	Additional dump trucks for excess waste
	Product End of Life	Traditional HMA/RAP	Traditional HMA/RAP	Traditional HMA/RAP	Traditional HMA/RAP
	Road Construction	Traditional HMA + J-Band Application	Traditional HMA + Application of Adhesive, Sealant	Traditional HMA (Smaller volume) with pass of heater	Traditional HMA + Mill off additional 6"
Road Lifetime	Road Maintenance	Minor crack sealing 3 years	Crack sealing/filling every 3 years May use routers	Crack sealing/filling every 3 years	Crack sealing/filling every 3 years
	Road End of Life	Year 18 (conservative)	Year 15	Year 16	Year 15

Methods

- Interviews with Industry Experts
- Equipment specific information
 - Reference manuals for trucks, generators, pavers, etc.

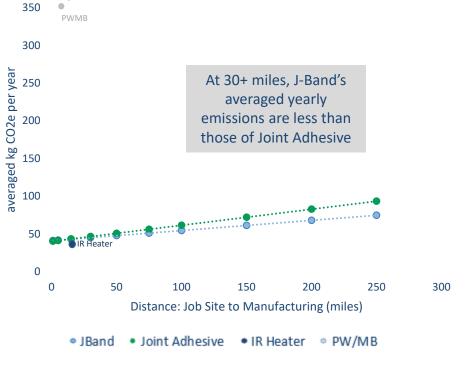
- Agency Data
 - Safety data: FHWA, BLS
 - Energy and Fuel data: Dept. Of Energy, EPA
 - Pollutant and Air Quality Data: EPA, Federal Regulations, NC DEQ

Assumptions

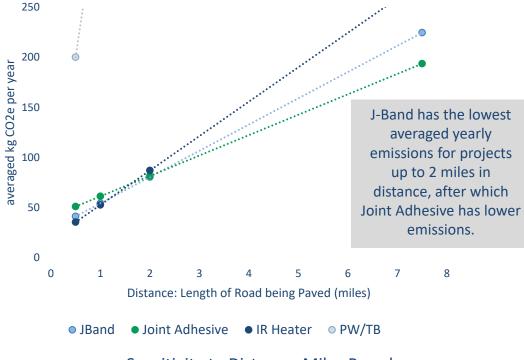
- This comparative life cycle analysis is focused on the singular life cycle of a joint. Modeling the full life cycle of a road, including additional asphalt and maintenance trips necessary on parts of the road not along the centerline joint, is out of scope for this analysis. In addition, the highly varied methods and needs for roads across different regions and road types would reduce the accuracy of the analysis.
- The model parameters presented in this deck are for a 1-mile stretch of paving that is located 50 miles away from the manufacturing site for J-Band and Joint Adhesive, and 30 miles away for IR Heater and Pave Wide/Trim Back.
- Emissions originating from vehicles idling in traffic slowdowns caused by road work are not included in the accounting. The social benefits of reduced congestion for the traveling public have not been accounted for, either. Both of these factors, had they been accounted for, would tip the scales further in favor of J-Band.
- With a lack of detailed manufacturing data and with the difference in composition between J-Band and Joint Adhesive materials being deemed insignificant, Joint Adhesive manufacturing emissions are estimated as a fraction of J-Band manufacturing emissions.
- Due to lack of data on fuel usage at the very slow vehicle speeds during application, fuel usage is based on highway and city fuel usage values.

Comparative effect on: Greenhouse Gas

- GHG emissions were analyzed for 4 stages across the life cycle of a road: Manufacturing, transport, application, and maintenance. Not all stages are applicable to every alternative.
- In the base case of a 1-mile project 50 miles from manufacturing to job site for J-Band and Joint Adhesive, and 30 miles away from IR Heater and PW/TB, J-Band emits 48.5 kg of CO2 equivalents/yr, which is less than all the other alternatives. This is largely due to the significantly reduced need for maintenance, as well as a quicker application process.
- Although J-Band's total lifetime emissions are higher than some alternatives, the increased longevity of the road results in fewer averaged per year emissions.


	GHG Emissions (kgCO2e)			
	J-Band	Joint Adhesive	IR Heater	PW/TB
Manufacture	458.6	35.6	-	3,042.4
Transport	136.3	160.0	-	58.1
Application	2.7	119.5	400.0	1,834.1
Maintenance trips	274.7	444.2	444.2	444.2
Total over lifetime	872.3	759.3	844.2	5,378.8
Averaged per year emissions	48.5	50.6	52.8	358.6

Greenhouse Gas Emissions, in kilograms of CO2 equivalents, broken down by segments of the construction process. This is for a 1-mile project distance, 50 miles away from manufacturing site*


Sensitivity Analysis of Alternative Methods

 GHG emissions vary based on different paving distances and transportation distances. A sensitivity analysis was performed to evaluate J-Band's performance over different model parameters

Sensitivity to Distance: Job Site to Manufacturing* (keeping constant 1 mi paved)

Sensitivity to Distance: Miles Paved (keeping constant 100 mi between Manufacturing and Job Site)

Comparative effect on: Air Quality

- Road construction and repair results in emissions of harmful compounds impacting local human health and environment
- Project emissions of regulated criteria air pollutants were comparatively assessed and included volatile organic compounds (VOCs), carbon monoxide, nitrogen oxides (NOx), and fine particulate matter (2.5µ diameter and smaller)
- All four compounds were combined as a pounds of pollutant metric

	Lb Pollutant (VOC/CO/NOx/PM2.5)				
	JBand	Joint Adhesive	IR Heater	PW/TB	
Manufacture	0.00072	0.00004	-	12.60	
Transport	1.8	3.7	-	1.6	
Application	0.061	1.5	1.5	122.7	
Maintenance trips	1.8	26.7	26.7	26.7	
Total over lifetime	3.7	31.8	28.2	163.6	
Averaged per year emissions	0.2	2.1	1.8	10.9	

Pounds of pollutants emitted during all phases (manufacture through maintenance) for a 1-mile project distance, 50 miles away from manufacturing site*

Comparative effect on: Safety

- Application and maintenance work on J-Band is expected to result in far fewer injuries and fatalities compared to the alternatives
- The reduction in required maintenance in the largest contributor to the reduced safety incidents of J-Band
- Safety metrics were calculated based on expected man-hours for each phase of work, combined with BLS and FHWA safety data

	Injuries per million miles			Fatalities per million miles				
	JBand	Joint Adhesive	IR Heater	PW/TB	JBand	Joint Adhesive	IR Heater	PW/TB
Application	21	32	189	284	0.7	1.1	6.3	9.5
Maintenance Trips	44	837	837	837	1.5	28.0	28.0	28.0
Total over lifetime	65	868	1026	1120	2.2	29.1	34.4	37.5
Average per year	4	58	64	75	0.1	1.9	2.1	2.5

Number of worker safety incidents. Safety metrics have been normalized to one million miles for ease of comprehension.

Sustainability Calculator

Based on the cost comparison calculator previously used by J-Band, a calculator incorporating sustainability metrics was designed for AMI. These include safety incidents, GHG emissions, and Air Pollutant emissions.

PWTB

J-Band						
Treatment Number	Year of Treatment	Treatment	GHG Emissions	Air Quality Emissions	Injury Rates	Fatality Rates*
1	0	Manufacturing	459	0.0007	-	-
2	0	Transport	73	1.8	-	-
3	0	Full-Depth Pavement 13" HMA	-	-	-	-
4	0	J-Band Application	2	0.1	0.000021	0.000001
5	3	Maintenance	31	0.2	0.000011	0.000000
6	6	Maintenance	61	0.4	0.000011	0.000000
7	9	Maintenance	61	0.4	0.000011	0.000000
8	12	Maintenance	61	0.4	0.000011	0.000000
9	15	Maintenance	61	0.4	0.000011	0.000000
10	18	Major Mill & Fill (2 lifts- 4")	-	-	-	-

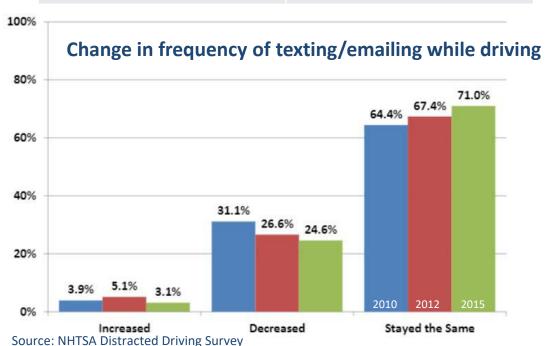
Infrared						
Treatment Number	Year of Treatment	Treatment	GHG Emissions	Air Quality Emissions	Injury Rates	Fatality Rates
1	0	Manufacturing	-	-	-	-
2	0	Transport	-	-	-	-
3	0	Full-Depth Pavement 13" HMA	-	-	-	-
4	0	IR Heater	399	1.5	0.000189	0.000006
5	4	Joint Seal	40	5.4	0.000054	0.000002
6	7	Joint Seal	40	5.4	0.000054	0.000002
7	10	Joint Seal	40	5.4	0.000054	0.000002
8	13	Joint Seal	40	5.4	0.000054	0.000002
9	16	Major Mill & Fill (2 lifts- 4")	-	-	-	-

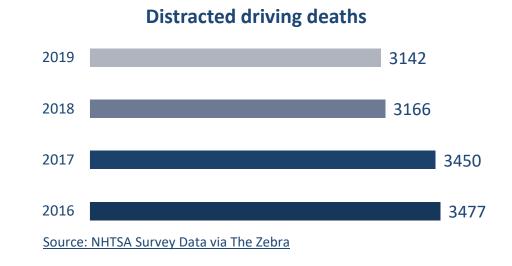
Joint Adhesive						
Treatment Number	Year of Treatment	Treatment	GHG Emissions	Air Quality Emissions	Injury Rates	Fatality Rates
1	0	Manufacturing	34	0.00004	-	-
2	0	Transport	96	3.70	-	-
3	0	Full-Depth Pavement 13" HMA	-	-	-	-
4	0	Joint Adhesive Surface				
5	0	Joint Adhesive Intermediate	119	1.46	0.000032	0.000001
6	0	Liquid Asphalt Sealant Surface				
7	3	Joint Seal	40	1.34	0.000054	0.000002
8	6	Joint Seal	40	1.34	0.000054	0.000002
9	9	Joint Seal	40	1.34	0.000054	0.000002
10	12	Joint Seal	40	1.34	0.000054	0.000002
11	15	Major Mill & Fill (2 lifts- 4")	-	-	-	-

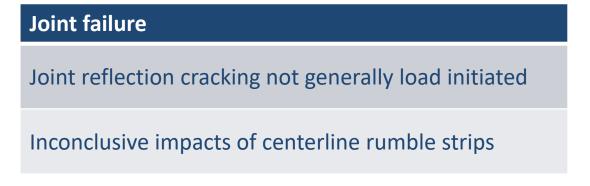
IVVID						
Treatment Number	Year of Treatment	Treatment	GHG Emissions	Air Quality Emissions	Injury Rates	Fatality Rates
1	0	Manufacturing	-	-	-	-
2	0	Transport	58	1.6	-	-
3	0	Full-Depth Pavement 13" HMA	-	-	-	-
4	0	Milling 6"	1834	122.7	0.000284	0.000010
5	0	Joint Seal	40	5.4	0.000054	0.000002
6	3	Joint Seal	40	5.4	0.000054	0.000002
7	6	Joint Seal	40	5.4	0.000054	0.000002
8	9	Joint Seal	40	5.4	0.000054	0.000002
9	15	Major Mill & Fill (2 lifts- 4")	-	-	-	-

These results represent values for a 1-mile project distance, 50 miles away from manufacturing site for J-Band and Joint Adhesive, and 30 miles away for IR Heater and PW/TB.

.


TRENDS AFFECTING J-BAND'S SUSTAINABILITY EDGE


Distracted Driving



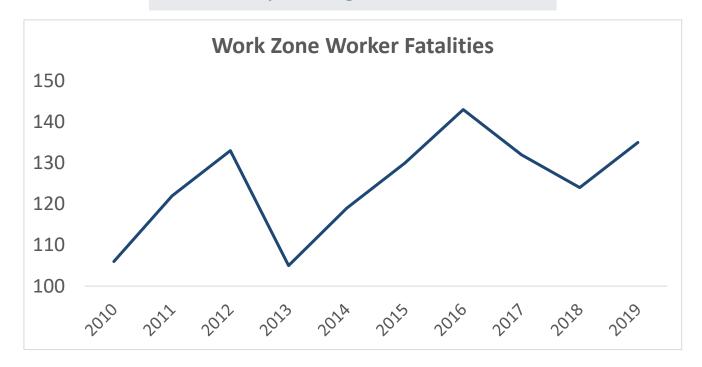
A potential increase in distracted driving could result in an increase in **wear and tear** on the centerline joint, leading to an **increased need for maintenance** on roads. In this case, an increase in maintenance requirements would give J-Band a further advantage over its competitors.

Causing Increase	Causing Decrease
Cell phone use	Autonomous vehicles
Complex in-vehicle information system	Regulation

Worker Safety

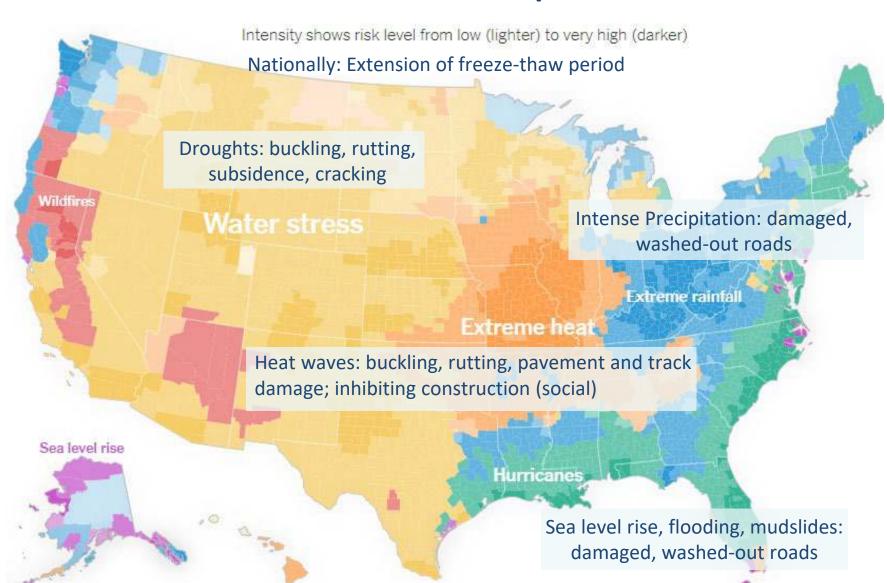
Work zone safety incidences are on the rise, leading to **an increasing number of injuries and deaths** among roadway construction workers. As J-Band reduces the need for maintenance, maintenance crews spend significantly **less time exposed to dangerous work zones** compared to alternative solutions.

Worker Fatalities in Road Construction Sites⁸


Worker fatalities in road construction sites	124	135
Where Speeding Was a Factor	172 26 %	239 31%
Involving a CMV	215 35 %	250 33 %
Involving a Rear-End Collision	141 21 %	182 24 %
The following types of fatal work zone crashes increased from 2018 to 2019:	2018	2019

Source: FHWA Work Zone Facts and Statistics

Worker safety trends


Slight upward trend in deaths

Previous 3-yr average: 133 deaths

Potential Climate Impact

Dominant climate impacts on roads will vary regionally, however, a multitude of factors will affect and eventually reduce the integrity of centerline joints.

J-Band helps a road withstand these stresses better than a road with no joint solution, and results in more resilient roads.

With its lower impact than other joint solutions, J-Band also contributes the least to the issue of climate change.

Key Questions Answered

→ How does J-Band compare to
alternative joint solutions in the
categories of air quality,
greenhouse gas emissions, and
safety?

Under the base conditions of the model, J-Band outperforms all the analyzed joint solutions

How will J-Band's sustainability benefits shift in the future, due to climate change, distracted driving, and possible policy developments?

With worker deaths trending upwards over the last few years, climate change impacting roadways in a variety of detrimental ways, J-Band has the potential to be **more resilient to climate change impacts and stresses brought about by distracted driving**, as well as reducing the amount of time crews will be performing maintenance.

→Which agencies and organizations that have control over the adoption and expansion of J-Band, also have interests in sustainability?

Most states DOTs and agencies acknowledge the **role** that they have in helping to achieving state, region, etc. greenhouse gas emission **reduction targets**. Similarly, for contractors that have shown an interest in sustainability, their focus on implementing sustainable solutions and reduction targets is growing.

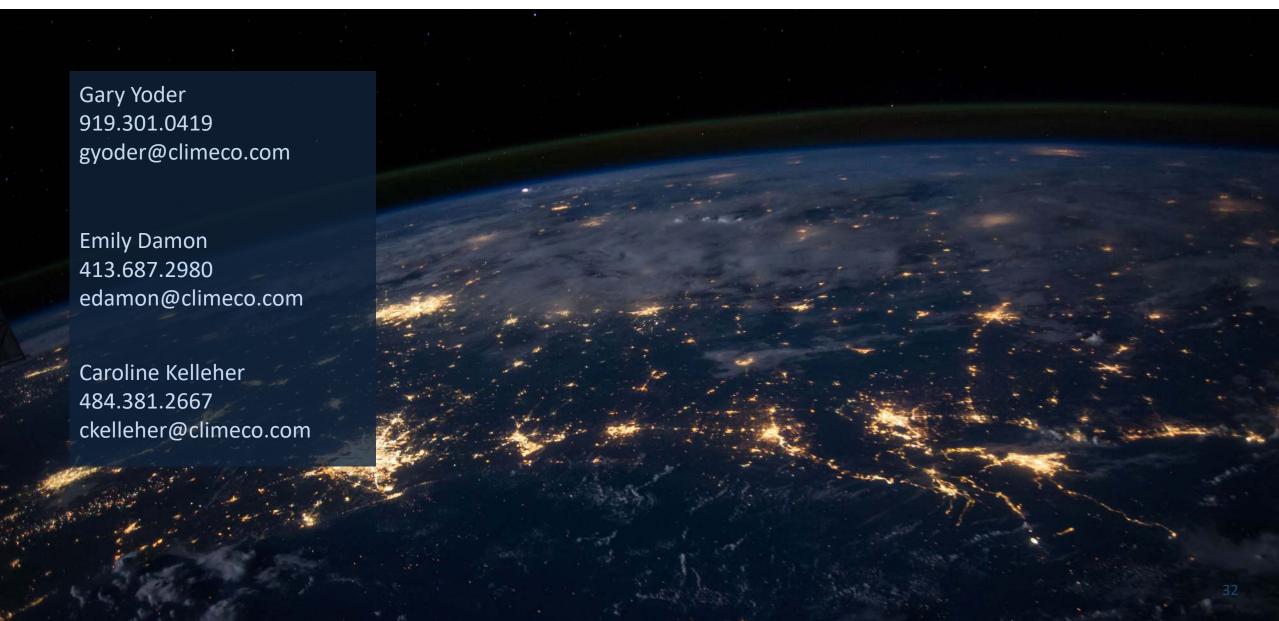
How can J-Band communicate its sustainability benefits to those parties?

Stakeholders in the interviews recommended **transparency** again and again. The findings are only as valuable as peoples' trust in them. Sharing openly is essential to building that trust. We recommend disclosing results alongside data sources, assumptions, gaps filled, etc.

Conclusions

- J-Band's benefits largely come from the reduced need for maintenance.
 With minimal repairs needed over the years, maintenance crews can make fewer and shorter trips, preventing greenhouse gas emissions and reducing the number of safety incidences for both workers and drivers.
- J-Band **extends the lifetime** of a pavement beyond the 15 years typical of traditional pavement. Over the long term, there are fewer pavement rehabilitations and replacements required with the use of J-Band.

In addition to the air quality and greenhouse gas benefits seen in this analysis, the reduced maintenance comes with a significant **reduction in emissions from the manufacture of the asphalt** compared to alternative joint solutions.



J-Band's benefits go beyond the financial. Its safety benefits and reduced greenhouse gas and pollutant emissions have much to offer customers looking to build a more sustainable future.

We believe these results should be recognized, and the role that J-Band can play in the decarbonization of the transportation sector should be emphasized.

Contacts

